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Systems II – Reliability Engineering
Definitions
· Operability – the ability of a plant to perform satisfactorily under conditions different from the nominal design conditions
· Feasibility of steady-state operation fro a range of different feed conditions and plant parameter variations (flexibility)

· Fast and smooth changeover and recovery from process disturbances (controllability, resiliency)

· Safe and reliable operation despite equipment failures

· Easy star-up and shut-down

· Reliability – probability that an item performs satisfactorily its specified function over a given time interval when operating under stated conditions

· Availability – probability that an item is performing satisfactorily at any point in time when operating under stated conditions and taking into account reliability and repair

· Maintenance – includes all actions to return a system from failed state to an operating or available state (corrective), or to retain a system in an operational (available) state by preventing failures (preventive)

· Maintenance costs may form 20-30% of the operating budget of a manufacturing company

· Maintenance optimisation aims in achieving a proper balance between maintenance costs and the benefit of increased process availability

· System effectiveness – the ratio between actual output (availability × capacity) and demand
Basic Concepts
Probability
· Defines quantitatively the likelihood of an event
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Probability Distribution Functions (see handout):

· Discrete

· Binomial

· Poisson

· Continuous

· Exponential

· Weibull

· Normal

Conditional Probability












F = Failure











S = Success










BF, BS = mutually exclusive

Bayes’ Theorem:
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Time
· t = 0

· The component is known to be operating

· Probability of failure at t = 0 is zero

· t ( ∞

· It is a certainty that a component will fail

· Probability of failure is unity

Reliability
· The probability that a component does not fall under specified operating conditions during the time interval (0, t) given that it was as good as new at time t=0
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Reliability Distribution
Unreliability
· The probability that a component fails for the first time during the interval (0, t) given that it was as good as new at time t=0

[image: image5.wmf](

)

(

)

N

t

N

t

t

F

f

=

=

(sample)

 

population

 

Total

 

age

 

before

 

failures

 

of

number 

 

Total


Note:
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Unreliability Distribution
Failure Density
Continuous case:
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Discrete case:
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Where the numerator is the number of failures in the time interval (

Failure Density
Failure Rate
· Probability of failure per unit time t given that the component was “repaired” at time zero and has survived to time t
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(1)
Relationships

By integrating (1) and rearranging, we obtain three important relationships:

Unreliability:
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Reliability:
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Failure Density:
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Mean Time to Failure (MTTF)
· Denotes the expected value of the failure density function f(t). Defined by the first moment of the failure density
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Constant Failure Rate Model
· Failure rate = r(t) = constant = (
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Weibull Distribution
· Failure rate:
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((,( ( 0; t ( 0)
Where
( is the shape parameter



( is the scale parameter

· Note: The failure rate of the Weibull distribution is increasing in t for values of (>1, decreasing in t for values of (<1 and constant when (=1. Thus, the exponential distribution (constant failure rate model) is a special Weibull distribution with (=1
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t>0
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t>0
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t>0

· Unlike exponential model, Weibull distribution is applicable to a variety of failure scenarios. Can be used to monitor situations where a component is either deteriorating or improving with usage
Three-parameter Weibull Distribution
· Failure Density:
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t>(
Since:
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And:

[image: image31.wmf](

)

(

)

t

F

t

R

-

=

1


(


[image: image32.wmf](

)

ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

û

ù

ê

ë

é

-

-

=

b

a

j

t

t

R

exp


Now:
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Relationship between different Reliability functions
	
	Failure Density
	Failure Rate
	Unreliability
	Reliability

	f(t) =
	
[image: image35.wmf](

)

t

f


	
[image: image36.wmf](

)

(

)

ú

û

ù

ê

ë

é

-

ò

x

x

l

d

r

t

t

0

exp


	
[image: image37.wmf](

)

t

F

dt

d


	
[image: image38.wmf](

)

t

R

dt

d

-



	r(t) =
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	F(t) =
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Availability, Unavailability and Repair
Availability:
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Unavailability:
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· Repair – contributes to availability but NOT to reliability:
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For non-repairable components
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· Repair Distribution – Probability that a component is repaired before time t given that it failed at time t=0:
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· Repair Density – Probability that component repair is completed during time interval (t, (t) given that it failed at time t=0:
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· Repair Rate – Probability that component is repaired per unit time at time t given that it failed at time t=0 and was in a failed state up to t
· Mean Time to Repair – Expected time to repair:
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· Mean Time between Failures – For repairable components:
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Constant Repair Rate Model
· Repair rate = m(t) = constant = (
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Combinatorial Aspects of Systems Reliability
SEE NOTES[image: image62.png]
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